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DEFORMATION, YIELD AND FRACTURE OF POLYMERS

THE APPLICATION OF INFRARED MICROSCOPY TO THE STUDY OF POLYMER FATIGUE

M. T. Hahn, R. W. Hertzberg, R. W. Lang, J. A. Manson, J. C. Michel,
A. Ramirez, C. M. Rimnac and S. M. Webler*

A model describing the frequency sensitivity of fatigue
crack propagation (FCP) of polymers in terms of localized
versus generalized specimen heating is examined. The mag-
nitude of heating at the crack tip and across the unbroken
ligament of the specimen is measured with an infrared
microscope. The results confirm the earlier hypothesis
regarding the observed frequency dependence of FCP
behavior.

INTRODUCTION

The viscoelastic nature of polymeric materials leads to hysteretic heating
during cyclic loading. For cyclic loading at constant stress range, Ac, the
rate of heat production per unit volume, C, is given by (I):

T f fD" (a2

4

where f is the cyclic frequency and D" the loss compliance of the material.
In unnotched specimens a relatively large portion of the material experiences
a high stress so bulk heating may occur (Eq. 1). This may result in a lower-
ing of the modulus or, in extreme cases, actual melting. It should be noted
that a decrease in specimen stiffness will lead to greater cyclic damage
under load-controlled conditions and will lower the fatigue life. Since the
rate of heating increases with increasing test frequency, it follows that
fatigue life would decrease in corresponding fashion. We shall define this
condition as one reflecting a negative frequency sensitivity.

In fatigue crack propagation (FCP) tests, heatLg is often localized
near the crack tip where the stresses are highest. Barenblatt et al (2) de-
rived an expression for such local temperature elevations for the case where
D" does not vary with temperature and the heated area is small compared to
the size of the unbroken ligament of the specimen. In this case, the temper-
ature rise, AT, is given by:

AT (r,e) - [D" f (AK)2 T (e)1/2ar (2)

where r and 9 are polar coordinates measured from the crack tip, A is a co-
efficient of heat exchange, and T (8) is a polynomial function of e and Pois-
son's ratio. We have suggested that this localized heating can retard FCP
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DEFORMATION, YIELD AND FRACTUHL UF PULYMERS

rates due to crack-tip blunting which low¢ers the effective stress intensity
range, aKeff (3). As frequency increases, beneficiaL local heating wc.ald be
expected to increase and result in further attenuation of the crack velocity.
Such frequency sensitivity is defined as being positive, in that FCP rates
are lowered with increasing test frequencies. For many polymers, positive
frequency sensitivity is maximized when the test temperature is close to the
temperature of the beta transition where energy dissipation and crack-tip
heating are maximized (3). This phenomenon has also been observed in the vi-
cinity of the alpha transition (4). In similar fashion, Clutton and Williams
(5) have argued that thermal blunting due to localized crack-tip heating in
impact tests can enhance the effective fracture toughness of polymers.

If the loss compliance of even a precracked polymer sample is very high,
however, the unbroken ligament of the sample can heat significantly in an FCP
test. As with unnotched samples, this may decrease specimen stiffness, and
result in greater damage per cycle. Since this detrimental heating increases
with increasing frequency, FCP rates will also increase with increasing test
frequency. Such negative frequency sensitivity with respect to FCP response
has been observed in impact-modified nylon 66 (6). While it is clear that
knowledge of specimen temperatures is important in the study of fatigue,
previous studies of FCP have lacked such detailed temperature information.
Attermo and Ostberg (7) used a scanning infrared camera to observe tempera-
tures near the crack tips in fatigue of polymers but did not report on the
associated FCP rates.

The objective of this paper is to correlate specimen temperature with
fatigue crack propagation rates. To this end, temperatures were recorded at
the crack tip and across the unbroken ligament of the specimen using an infra-
red microscope. This instrument has many advantages over other methods in-
cluding good spatial resolution, fast response time, precise measurement, easy
data acquisition, and non-interference with specimen heating. The effects of
several material and test variables on specimen temperature rise are described,
as well as the effects of such temperature increases on FCP.

EXPERIMENTAL

tiaterials

The materials examined includ&d: impact-modified nylon 66 (Zytel ST8Ol),
poly(vinyl chloride) modified with 67. methyl methacrylate-butadiene-styrene
copolymer (PVC-67. MBS), and acrylonitrile-butadiene-styrene graft copolymer
(ABS). Impact-modified dry nylon samples (ln=17,000)(8) were prepared from
8.3 mm thick injection molded plaques. The PVC-67. NBS samples were prepared
from material supplied with a weight-average molecular weight, Mk, of 1.69 :
105. ABS specimens were prepared from 4.8 mm thick extruded sheet.

Loss miduli for the above materials were determined bx dynamic mech-.. a.L
spectroscopy using an automated Rheovibron, model DDV-IIIC. The test proce-
dure is reported elsewhere (9).

FCP Testing

ABS, PVC-6% MBS, and impact-modified nylon were machined into compact-
type (CT) specimens with a height-to-width ratio, H/W, of 0.6. For the impact
modified nylons and the PVC-67. MBS, W=61.O m; the ABS had W=63.5 nm. FCP
tests were run at constant load range with R=O.1 on a closed-loop servohydrau-
lic testing machine. A sinusoidal waveform was used and test frequencies
ranged from 1 to 100 Hz. Crack lengths were measured using a traveling micro-

19.2
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scope. It was necessary to interrupt the test to make such measurements,

since these interruptions allowed the specimen to cool, hold time pcri'ds ,';cr-
kept as brief as possible. The measured crack growth rates, da/dN, were plst-

ted as a function of the stress intensity factor range, LK.

Temperature Measurements

Temperature measurements were made using an RM'-2B infrared radiometric

microscope manufactured by Barnes Engineering Co. and equipped with a 15X lens

with a spot size of 75 ,m. The lens collects infrared radiation with wave-

lengths between 2 and 20 .m and sends this radiation to a germanium detector.

The resulting signal is amplified and the analog voltage is displayed on a

dial which allows direct reading of temperatures from 15 up to 1650C. The

microscope was mounted on a Gaertner XYZ positioner which allows traversing

in three perpendicular directions. A linear variable differential transducer

(LVDT), mounted adjacent to the positioner, measured the movement of the

microscope in the direction of crack growth. The output voltages of the LVDT

and the IR microscope were connected to an X-Y recorder; temperature-distance

profiles were then generated semi-automatically by traversing the microscope
in the direction parallel to the crack plane. Temperature profiles and maxi-

mum temperatures were periodically monitored throughout a test. All tempera-

ture measurements were made while the specimens were being cycled, and there-

fore represent steady-state measurement for each LK, test frequency, and

material condition.

RESULTS AND DISCUSSION

The earlier hypotheses (3,4,6,10) about the interrelation of viscoelastic

damping peaks, hysteretic heating, and crack growth rates were confirmed by

correlation of FCP data with the infrared temperature measurements and the

dynamic mechanical data. These data are shown in Figure la-i for three cases:

(1) ABS, which shows negligible frequency sensitivity, (2) PVC-6,, MS, which

shows positive frequency sensitivity, and (3) impact-modified nylon 66, which

shows negative frequency sensitivity.

In the FCP data for ABS, Figure la (10), no significant variation in the

growth rates is seen when the frequency varies between I and 100 Hz. This is

consistent with the measurements of specimen temperature, Figure Id, which

show that negligible heating takes place at the frequencies from 1 to 100 11z

and values of AK of up to 1.0 MPa/. Positive frequency sensitivity is il-

lustrated in Figure lb for PVC-6% MBS. A decrease in the crack growth rate

occurs as the test frequency increases from 10 to 100 Hz. The specimen tem-

peratures, Figure le, show negligible heating at 10 Hz and a 4K of 1.4 Pa, m-m;
for the same AK value a temperature rise of 9

0C is observed at 100 Hz. Note

that this temperature rise is localized near the crack tip. 1.,e believe that

the localized heating at 100 tiz leads to irearer crack b in - , th-.rb o" D -

counting fur the lower FCP rates. The FCP data for impact-rodified nylon 66

are shown in Figure lc (6). Note the increase in FCP rates with increasing

frequency. (The 30 Hz data correspond to a material containing some unknown

amount of water but are believed to correctly represent overall data trends.)

This negative frequency sensitivity also may be related to the infrared tem-

perature rise in dry samples is significant at 10 Hz and even greater at 30Hz.

The temperature rises observed are certainly sufficient to lower the value 'f

the modulus, resulting in greater cyclic damage as discussed elsewhere (6).

At this point, it is important to consider why more heating takes place

in the impact-modified nylon 66 samples as compared with the PVC-6% 1TBS and

ABS samples. Equation 2 shows that AT varies directly with the magnitudes of
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D", test frequency, and (6K)2 . In addition, one must be mindful of the rate
of change of D" with temperature, dD"/dT; when this parameter is positive and
large, specimen heating occurs under autoaccelerating conditions. From Figure
lg,h,i we see that D" for the modified nylon 66 is the smallest among the thret
materials and, yet, this material experiences the greatest amount of heating.
This condition is surely traced, in part, to the higher LK level (2.9 MPavi'7)
associated with the temperature measurements of this material as compared with
the ABS (AK-1.0 MPaf ) and PVC-67. NBS (1.4 MPaf'm-)polymers. (The AK levels
chosen for each polymer reflect the relative ranking of the fatigue resistance
of these materials.) Also, the D"-gradient, dD"/dT is much greater in the
nylon sample over the temperature ranges experienced by these materials. Even
greater temperature elevations would be expected in the nylon sample had it
been possible to conduct the fatigue test at 100 Hz (the frequency used in the
ABS and PVC-67. MBS materials.) Finally, the greater amount of heating found
in the PVC-67. MBS material as compared with ABS is traced to the combined in-

fluence of higher AK values used in the fatigue test and the magnitude of D"
in the PVC-67. N.BS polymer. Thus it is shown that for the cases of positive,
negative, or zero frequency sensitivity, the FCP data correlate well with
infrared temperature measurements and the viscoelastic damping data.

The preceding results show specimen temperature distributions at one
value of AK for each material. Additional studies have shown that crack-tip
temperatures increase markedly with increasing levels of AK and that the rate
of increase in temperature with respect to crack length, dT/da, is linked
strongly with the K-gradient, dK/da. We have also found that the second-power
dependence of &K (Eq.2) holds only when D" for the material in question does
not vary over the temperature range encountered. Finally, it has been shown
that the degree of heating depends on the specimen configuration. For a given

AK-level, specimen heating is greater for cases in which the Y-calibration
factor of AK is low. In this circustance, the overall cyclic stress level is
higher, which contributes to greater hysteretic heating.

CONCLUSIONS

The infrared temperature measurements, together with viscoelastic data,
serve to explain positive, negative, and negligible frequency sensitivity in
a number of polymers. The observed frequency sensitivity is consistent with
previous arguments of the competition between localized and generalized heat-
ing. The degree of hysteretic heating was found to depend on the prevailing
values of &K, test frequency, and loss moduli.
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